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ABSTRACT: Forecasting financial time series is a fundamental task for investors, analysts, and financial 

institutions. This study evaluates the predictive performance of ARIMA and LSTM models on the daily trading 

value of Netflix (NFLX), defined as the product of the adjusted closing price and trading volume. The dataset is 

pre-processed and partitioned into training and test subsets to ensure robust model evaluation. ARIMA models are 

employed to capture linear temporal dependencies, while LSTM networks are utilized to learn nonlinear and long-

term patterns inherent in financial time series. Forecast accuracy is assessed using standard error metrics, including 

MAE, RMSE, and MAPE. The comparative analysis reveals the strengths and limitations of each approach, 

offering practical insights into their applicability for financial forecasting.  
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1. INTRODUCTION 
Financial time series forecasting is a 

challenging problem due to the non-stationary, 

noisy, and often non-linear nature of financial 

data. Traditional statistical methods, such as 

the Autoregressive Integrated Moving 

Average (ARIMA) model, have been widely 

applied in econometrics and quantitative 

finance, offering interpretable parameters and 

reliable modelling of linear trends and seasonal 

components. However, financial series 

frequently exhibit non-linear dependencies, 

abrupt changes, and long-range correlations, 

which limit the predictive accuracy of purely 

linear models. Techniques from recent 

research on hybrid statistical and AI-based 

generation of time series [5] demonstrate the 

potential of combining decomposition and 

neural network approaches to better model 

complex temporal patterns. 

Recent advances in deep learning have 

introduced more flexible architectures for 

temporal modelling. Among these, Long 

Short-Term Memory (LSTM) networks—a 

variant of recurrent neural networks (RNNs)—

have demonstrated strong capabilities in 

learning complex temporal dependencies and 

capturing non-linear dynamics within 

sequential data. Unlike classical models, 

LSTMs can retain long-term information 

through gated mechanisms, allowing them to 

adapt to structural breaks and volatility 

commonly observed in financial markets. 

These characteristics make LSTMs 

particularly effective for capturing 

relationships that evolve over time and are not 

easily represented by linear models. 

 

Current research supports the complementary 

nature of these two approaches. Traditional 

models like ARIMA remain valuable for their 

interpretability and performance on stationary 

or quasi-linear series, while LSTMs and other 

deep learning methods are better suited for 

complex, non-stationary environments [7]. 

Recent reviews highlight that hybrid and deep 

learning-based approaches are becoming 

dominant in time series forecasting due to their 

superior adaptability and accuracy in real-

world applications [6], [4]. 
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In this study, we focus on forecasting the daily 

trading value of Netflix (NFLX), defined as the 

product of the adjusted closing price and daily 

trading volume, as a proxy for market activity. 

The objective is to evaluate and compare the 

predictive performance of ARIMA and LSTM 

models on this univariate time series, 

emphasizing the advantages and limitations of 

statistical versus neural network-based 

methods in financial forecasting. 

 

2. METHODOLOGY 
2.1 Data Description and Preprocessing 

The dataset analysed in this study was obtained 

from the Kaggle repository (“Netflix Stock 

Price History” by Adil Shamim [8]). It consists 

of daily trading data for Netflix (NFLX) 

covering the period from January 2002 to 

January 2025 (see Figure 1). It should be noted 

that the dataset was used primarily to compare 

the performance of different forecasting 

methods, rather than for a detailed market 

analysis. 

 
Figure 1 

The dataset includes standard stock market 

attributes such as Date, Open, High, Low, 

Close, Adjusted Close, and Volume. 

The primary variable of interest, referred to as 

the trading value, was computed as the 

product of the adjusted closing price and the 

daily trading volume (Adjusted Close × 

Volume), providing a measure of the total 

market activity for each trading day. 

Prior to modelling, the dataset underwent 

standard preprocessing procedures. Missing 

values were handled through linear 

interpolation using the pandas 

interpolate(method='linear') function, which 

replaces each missing entry with the arithmetic 

mean of its immediate neighbours, ensuring 

continuity in the time series. Outliers were 

addressed by substituting anomalous 

observations with the average of surrounding 

values to reduce the influence of extreme 

fluctuations on model training. The series was 

then normalized using Min–Max scaling to 

facilitate convergence of the neural network 

models. Finally, the dataset was partitioned 

into training and test subsets, with the last 10–

11 days reserved for evaluating out-of-sample 

forecasting performance. 

 

2.2 ARIMA-Based Models  

The Autoregressive Integrated Moving 

Average (ARIMA) model is a classical 

statistical approach widely used for forecasting 

univariate time series [1-2]. ARIMA models 

capture linear dependencies and trends through 

the combination of three components: the  

autoregressive (AR) term, the differencing (I) 

term, and the moving average (MA) term.  

The general ARIMA (𝑝, 𝑑, 𝑞)  model is 

defined as: 𝜑(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃(𝐵)𝜀𝑡, where 

 

𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵
2−. . . −𝜑𝑝𝐵

𝑝, 

𝜃(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵
2+. . . +𝜃𝑞𝐵

𝑞, 

𝜀𝑡 ∼ i.i.d. (0, 𝜎2), 
 

with  𝐵  denoting the backshift operator,  𝑑 the 

order of differencing,  𝑝  the autoregressive 

order, and  𝑞 the moving average order. 

To determine the appropriate ARIMA orders  

𝑝 and 𝑞, we analysed the autocorrelation 

(ACF) and partial autocorrelation (PACF) 

functions of the series. The ACF measures 

correlation between the series and its lagged 

values, while the PACF measures correlation 

after removing intermediate lags. Significant 

spikes in the ACF suggest potential moving 

average (MA) components, and spikes in the 

PACF indicate possible autoregressive (AR) 

components [1]. 

Since the trading value series exhibited non-

stationarity, first-order differencing (𝑑=1) was 

applied to remove trends in the mean. The 

ACF and PACF of the differenced series were 

then inspected: sharp cutoffs in PACF indicate 

the AR order, while cutoffs in ACF suggest the 

MA order. 
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Candidate ARIMA models were further 

evaluated using information criteria (AIC and 

BIC) to balance model fit and complexity. 

Among them, ARIMA(2,1,4) achieved an AIC 

of 252819.13, slightly lower than 

ARIMA(1,1,1) with 252888.05, indicating a 

better fit. Therefore, ARIMA(2,1,4) was 

selected, effectively capturing the 

autocorrelation and moving average patterns 

of the series while maintaining parsimony. 

In this study, two ARIMA-based 

approaches were applied to the Netflix trading 

value series: 

 

A. Standard ARIMA. The model was fitted 

directly on the univariate trading value series 

to capture linear temporal dependencies. 

Parameters 𝑝, 𝑑 and 𝑞 were selected based on 

the autocorrelation and partial autocorrelation 

functions, as well as AIC/BIC criteria. 

Forecasts were generated for the test period, 

along with 95% confidence intervals. The 

predictive performance of the standard 

ARIMA model can be observed in  Figure 2. 

 

 

 
Figure 2 

Figure 2 presents the last 10 values from the 

training set, the 10-step ARIMA forecast, and 

the corresponding test values. The ARIMA 

forecast aligns closely with the actual test 

values, capturing the overall dynamics of the 

total trading value. This performance is 

supported by the obtained error metrics (Mean 

Absolute Error (MAE) = 5.54 × 108, Mean 

Squared Error (MSE) = 6.27 × 1017, Root 

Mean Squared Error (RMSE) = 7.92 × 108, 

Mean Absolute Percentage Error (MAPE) = 

11.23%), as reported in Table 1. 

 

B. STL-ARIMA (ARIMA on decomposed 

components): The trading value series was 

first decomposed using Seasonal-Trend 

decomposition via Loess (STL) into trend, 

seasonal, and residual components [3]. STL is 

a robust method that separates a univariate 

time series into additive components: the trend 

captures long-term changes, the seasonal 

component identifies repeating patterns over a 

fixed period, and the residual accounts for 

irregular fluctuations and noise. This 

decomposition allows each component to be 

modelled separately, improving forecast 

accuracy. In this study, the seasonal period was 

set to 12 to reflect the annual pattern in the 

data, ensuring that both trend and seasonality 

were properly captured for subsequent 

ARIMA modelling. 

ARIMA models were then applied to the trend 

and residual components, while the seasonal 

component was reintroduced to produce 

combined forecasts [7]. Specifically, 

ARIMA(1,1,3) was fitted to the trend 

component and ARIMA(1,0,1) to the residual 

component. This setup allows the model to 

explicitly capture both long-term trends and 

short-term fluctuations. This approach 

explicitly models seasonality, allowing the 

model to better capture short-term fluctuations 

and improve forecast accuracy. 

Performance metrics for the STL-based 

ARIMA model were comparable to the 

standard ARIMA model, with minor 

improvements in capturing seasonal 

variations.  

 

 

 
Figure 3 

Figure 3 shows the last 10 training values, the 

STL-ARIMA forecast, and the actual test 
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values, highlighting how trend and seasonality 

contribute to the predictive performance. 

The STL-based ARIMA forecast yielded 

higher errors compared to the standard 

ARIMA model, with MAE = 1.97 × 10⁹, MSE 

= 6.47 × 10¹⁸, RMSE = 2.54 × 10⁹, and MAPE 

= 4.73 × 10¹ %, reflecting the increased 

difficulty of modeling the residual component 

and capturing short-term fluctuations (Table 

1). 

 

2.3 LSTM Model 

Long Short-Term Memory (LSTM) networks 

are a class of recurrent neural networks 

designed to capture long-term dependencies in 

sequential data [4-6]. Unlike ARIMA, LSTMs 

can model non-linear relationships and adapt 

to dynamic patterns in financial time series. 

For the Netflix trading value, is considered the 

following LSTM approach: 

Data preparation: Input sequences were 

created using a fixed look-back window of 60 

days, with the target being the total trading 

value (Adjusted Close × Volume) of the next 

day. Only one-dimensional sequences were 

used for this main model, consistent with the 

ARIMA analysis. The data were normalized 

using Min-Max Scaler, and no rows were 

removed via early stopping or similar 

preprocessing. 

Network architecture: The model consists of 

a single LSTM layer with 60 units, followed 

by a dense output layer. This simpler 

architecture captures nonlinear temporal 

dependencies in the product series while 

minimizing the risk of overfitting due to the 

limited sample size. 

Training procedure: The model was trained 

using the Adam optimizer and the MSE loss 

function. Training was performed for 20 

epochs with a batch size of 16. No early 

stopping was applied in this configuration. 

Forecasting: Once trained, the LSTM 

generated forecasts using a 10-step recursive 

approach, where each predicted value was 

appended to the input sequence for the next 

step. Predicted values were rescaled to the 

original scale for comparison with actual 

trading values. Performance metrics for this 

univariate LSTM are shown in Table 1, while 

the visual representation of the forecasts, 

including the last 10 training values, the 10-

step predictions, and the actual test values, is 

presented in Figure 4. 

 

 

 
Figure 4 

2.4 Evaluation Metrics 

Forecasting performance across the different 

models—standard ARIMA, STL-based 

ARIMA, univariate LSTM, and bidimensional 

LSTM—was assessed using four widely 

adopted metrics: 

Mean Absolute Error (MAE): MAE 

measures the average magnitude of the errors 

between predicted and observed values, 

without considering their direction. It provides 

an intuitive understanding of the typical 

deviation expected from the model’s forecasts. 

Lower MAE values indicate more accurate 

predictions. 

Mean Squared Error (MSE): MSE 

calculates the average of the squared 

differences between predicted and observed 

values. By squaring the errors, it penalizes 

larger deviations more heavily and provides a 

sense of the overall error variance. Lower MSE 

values indicate better overall predictive 

accuracy. 

Root Mean Squared Error (RMSE): RMSE 

penalizes larger errors more heavily than MAE 

due to its quadratic formulation. It is 

particularly useful for identifying models that 

produce occasional large deviations and 

emphasizes overall forecast reliability. 

Mean Absolute Percentage Error (MAPE): 

MAPE expresses forecast errors as a 

percentage of actual values, allowing for 

relative comparisons across different scales 

and series. It offers insight into the 

proportional accuracy of the predictions and is 
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especially informative for non-stationary 

financial series. 

These metrics collectively provide a 

comprehensive view of model performance, 

highlighting both absolute and relative 

deviations between predicted and actual 

trading values. Based on the results 

summarized in Table 1, the standard ARIMA 

model consistently achieved the lowest errors 

across all metrics (MAE = 5.54 × 10⁸, MSE = 

6.27 × 10¹⁷, RMSE = 7.92 × 10⁸, MAPE = 11.2 

%), indicating its strong capability to capture 

the overall dynamics of the Netflix trading 

value. The univariate LSTM produced slightly 

higher errors (MAE = 1.05 × 10⁹, MSE = 1.79 

× 10¹⁸, RMSE = 1.34 × 10⁹, MAPE = 21.4 %), 

reflecting its ability to capture nonlinear short-

term variations, but with less overall accuracy 

than the standard ARIMA approach. The STL-

based ARIMA model showed the largest errors 

(MAE = 1.97 × 10⁹, MSE = 6.47 × 10¹⁸, RMSE 

= 2.54 × 10⁹, MAPE = 47.3 %), demonstrating 

that decomposing the series and modelling 

components separately did not improve 

forecasting performance in this case. 

In addition to quantitative measures, visual 

inspection of forecast plots—including the last 

values from the training set, predicted values, 

and actual test values—complements the 

numerical evaluation, providing a clear 

understanding of each model’s practical 

performance in financial time series 

forecasting. Based on both these assessments, 

the comparative analysis indicates that the 

standard ARIMA model outperforms both the 

univariate LSTM and the STL-based ARIMA 

in terms of overall accuracy and reliability for 

forecasting Netflix trading values. While the 

LSTM captures short-term nonlinear 

fluctuations, its higher errors suggest limited 

effectiveness for precise long-term 

predictions. The STL-based ARIMA’s 

relatively poor performance further highlights 

that decomposition does not necessarily 

enhance forecast accuracy for this dataset. 

Together, these results emphasize that, for this 

specific financial time series, the classical 

ARIMA approach remains the most robust and 

dependable method for capturing the 

underlying market dynamics. 

 

Table 1 

Metric ARIMA ARIMA-

STL 

LSTM 

MAE 5.54 × 

108 

1.97 × 109 1.05× 

109 

MSE 6.27 × 

1017 

6.47 × 

1018 

1.79× 

1018 

RMSE 7.92 × 

108 

2.54 × 109 1.34× 

109 

MAPE 11.2% 47.3 % 21.4% 

 

 

5. CONCLUSION  
The comparative evaluation of forecasting 

performance reveals clear distinctions between 

the models. The standard ARIMA consistently 

achieved the lowest errors across both absolute 

and relative metrics, demonstrating its strong 

capability to capture the overall dynamics of 

Netflix trading values. Its superior MAE, 

MSE, RMSE, and MAPE indicate reliable 

performance in both magnitude and 

proportional accuracy, making it the most 

robust choice for practical forecasting tasks. 

The univariate LSTM, while capable of 

capturing short-term nonlinear fluctuations, 

produced higher errors, suggesting limited 

effectiveness for precise long-term 

predictions. This highlights that, for this 

dataset, the model’s ability to learn complex 

patterns did not translate into superior overall 

accuracy compared to the simpler ARIMA 

approach. 

The STL-based ARIMA model exhibited the 

largest errors, indicating that decomposing the 

series into trend, seasonal, and residual 

components and modelling them separately 

did not improve forecast accuracy. Although 

decomposition can provide interpretability, in 

this case it failed to enhance predictive 

performance. 

Overall, these results illustrate that, for Netflix 

trading values, classical statistical approaches 

like ARIMA can outperform more complex 

deep learning methods in terms of reliability 

and accuracy. Combining quantitative metrics 

with visual inspection of forecast trajectories 

provides a comprehensive evaluation of model 
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performance, guiding the selection of the most 

appropriate method for financial time series 

forecasting. 
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